Nonstationary Response Of Large, Non-Linear Finite Element Systems Under Stochastic Loading

نویسنده

  • C. A. Schenk
چکیده

A very efficient and straightforward numerical procedure for the computation of statistical second moment characteristics of large, non-linear finite element systems under stochastic loading is presented. For the modeling of both the loading and the response of the system an orthogonal series expansion of the corresponding covariance matrix, the so-called Karhunen-Loève expansion is applied, allowing to incorporate potentially available statistical data of an excitation process directly into the analysis. The non-linear equation of motion is linearized by the method of equivalent statistical linearization. According to the present capabilities of this linearization technique, one-dimensional hysteretic elements are used for modeling the non-linear system behavior. The mode acceleration method is applied in order to reduce significantly the size of the system equation and thus increasing the computational efficiency of the proposed procedure. Contrary to methodologies based on state space formulations, this procedure relies on deterministic step by step integration, implying that the dimension of the system equation is the same as in a purely deterministic analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear Response and Dynamic Buckling Analysis of a Cylindrical Sandwich Panel with a Flexible Core under Blast Loading

In this paper, three-dimensional displacement response of a cylindrical sandwich panel with compressible core under the action of dynamic pulse loading is addressed using the extended high order sandwich panel theory. Also, local dynamic pulse buckling of facesheets is studied by considering the Budiansky-Roth buckling criterion. It is assumed that the sandwich panels consist of orthotropic fac...

متن کامل

Axial Crushing Analysis of Sandwich Thin-walled Tubes using Experimental and Finite Element Simulation

Application of impact energy absorption systems in different industries is of special significance. Thin-walled tubes, due to their lightness, high energy absorption capacity, long crushing length and the high ratio of energy absorption to weight, have found ever-increasing application as one of the most effective energy absorption systems. In this research, through  carrying out experimental t...

متن کامل

Analytical and numerical techniques in frequency domain response computation

In this paper the analytical formulation of frequency domain analysis is reviewed, under a unifying approach, for deterministic and random dynamic loading. In the random case both stationary and nonstationary excitations are considered. It is shown how, in all cases, a complex linear system must be solved at each frequency step; if the solutions are carried on independently, the solution cost g...

متن کامل

Experimental Study of Masonry Structure Under Impact Loading and Comparing it with Numerical Modeling Results via Finite Element Model Updating

Given the sophisticated nature of the blast phenomenon in relation to structures, it is of significance to accurately investigate the structure behavior under blast loads. Due to its rapid and transient nature, blast loading is one of the most important dynamic loadings on the structures. Since masonry materials are widely used as the partition and bearing walls in the existing and newly-built ...

متن کامل

A comparative study on pile group and piled raft foundations (PRF) behavior under seismic loading

Study on the seismic behavior of piled rafts and pile groups while the same amount of construction material and excavation is used in their construction, are the main objective of this research. The process where the raft interaction with soil can affect the seismic response and stress distribution is also discussed in the current study. By means, ABAQUS software was applied for the finite elem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006